Jangkauanantar kuartil dari 16, 16, 18, 15, 19, 16, 17, 15, 15 adalah Pembahasan / penyelesaian soal. Untuk menjawab soal ini kita tentukan terlebih dahulu kuartil pertama dan kuartil ketiga data diatas. Urutan data dari kecil ke besar sebagai berikut: Menentukan kuartil. Berdasarkan gambar diatas kita peroleh: → Q1 = = 15 → Q3 = = 17,5 Nilaisimpangan kuartil dari data: 15, 13, 7, 16, 11, 10, 13, 9, 16, 8, 10 adalah. Simpangan Kuartil Statistika Wajib STATISTIKA Matematika Cek video lainnya Sukses nggak pernah instan. Latihan topik lain, yuk! Matematika Fisika Kimia Caramencari simpangan kuartil data tunggal bisa Sobat Zenius aplikasikan menggunakan rumus yang sudah disebutkan sebelumnya. Dari rumus di atas, kita bisa mendapatkan angka berikut: Qd = ½ H = ½ 10 = 5 Langkah L = 3/2 H = 3/2 10 = 15 Pagar dalam Pd = 6 - 15 = -9 Pagar luar Pl = 16 + 15 = 31 Data kelompok Vay Tiền Nhanh. Halo Valey V, kakak bantu jawab yaa Jawaban yang benar adalah B 6,5. Pembahasannya sebagai berikut. Rumus simpangan kuartil SK = ½Q₃ – Q₁ Q₃ nilai kuartil 3 Q₁ nilai kuartil 1 Cara menentukan kuartil data tunggal 1 urutkan terlebih dahulu dari data terkecil ke terbesar 2 tentukan Qáµ¢ dengan cara membagi data menjadi 4 bagian setara. ...............Q₁................Qâ‚‚.................Q₃................ Diketahui Data 16, 15, 15, 19, 20, 22, 16, 17, 25, 29, 32, 29, 32 Urutkan 15, 15, 16, 16, 17, 19, 20, 22, 25, 29, 29, 32, 32 ...............Q₁................Qâ‚‚.................Q₃................ Q₁ = 16+16/2 = 32/2 = 16 Qâ‚‚ = 20 Q₃ = 29+29/2 = 58/2 = 29 SK = ½Q₃ – Q₁ = ½29 – 16 = ½13 = 6,5 Jadi, jawaban yang benar adalah B. Semoga membantu yaa Contoh soal simpangan kuartil dan pembahasannyaArtikel ini membahas contoh soal jangkauan, jangkauan antar kuartil dan simpangan kuartil yang disertai pembahasannya. Jangkauan diartikan sebagai selisih antara data terbesar dengan data jangkauan sebagai berikut → Jangkauan = XBesar – XKecil Rumus jangkauan antar kuartil → Jangkauan antar kuartil = Q3 – Q1 Rumus simpangan kuartil → Simpangan kuartil = 12 Q3 – Q1KeteranganXbesar = data terbesarXkecil = data terkecilQ1 = kuartil pertama atau kuartil bawahQ3 = kuartil ketiga atau kuartil atasUntuk lebih jelasnya, perhatikan contoh soal jangkauan, jangkauan antar kuartil dan simpangan kuartil dibawah soal 1Jangkauan dari data 1, 3, 4, 12, 14, 13, 14, 2, 1, 4, 5, adalah…Pembahasan / penyelesaian soalBerdasarkan data diatas diketahui data terbesar = 14 dan data terkecil = 1 maka jangkauan XBesar – XKecil = 14 – 1 = 13. Jawaban soal ini adalah soal 2Jangkauan antar kuartil dari 16, 16, 18, 15, 19, 16, 17, 15, 15 adalah…A. 15,5C. 17,5D. 18E. 18,5Pembahasan / penyelesaian soalUntuk menjawab soal ini kita tentukan terlebih dahulu kuartil pertama dan kuartil ketiga data diatas. Urutan data dari kecil ke besar sebagai berikutMenentukan kuartilBerdasarkan gambar diatas kita peroleh→ Q1 = 15 + 152 = 15 → Q3 = 17 + 182 = 17,5Jadi jangkauan antar kuartil data diatas Q3 – Q1 = 17,5 – 15 = 2,5. Soal ini jawabannya soal 3Simpangan kuartil dari 13, 14, 15, 17, 11, 11, 18, 19 adalah…A. 2,75B. 7,5C. 11D. 13E. 17Pembahasan / penyelesaian soalSama seperti nomor 2 tentukan terlebih dahulu kuartil bawah dan kuartil atas data dengan gambar dibawah inimenentukan kuartilMaka kita peroleh→ Q1 = 11 + 132 = 12 → Q3 = 17 + 182 = 17,5Simpangan kuartil data nomor 3 sebagai berikutSimpangan kuartil = 1/2 Q3 – Q1Simpangan kuartil = 1/2 17,5 – 12 = 1/2 5,5 = 2, soal ini adalah soal 4Data berat badan siswa kelas 12 SMA dalam kg sebagai berikut 47, 53, 62, 54, 48, 55, 59, 60, 48, 50, 58, 62, 63, 66, 68, 90, 63, 58, 59. Jangkauan dan simpangan kuartil data tersebut adalah…Pembahasan / penyelesaian soalPada soal diatas diketahui data terbesar adalah 90 dan data terkecil 47 maka jangkauan = 90 – 47 = kita menentukan kuartil pertama dan kuartil ketiga sebagai berikutMeenentukan kuartil nomor 4Jadi peroleh Q1 = 53 dan Q3 = 63 maka simpangan kuartilSimpangan kuartil = 1/2 Q3 – Q1Simpangan kuartil = 1/2 63 – 53 = 1/2 10 = 5Jadi soal ini jawabannya soal 5Tabel dibawah ini adalah tinggi badan siswa SMA kelas cmFrekuensi160 – 16215163 – 16512166 – 16813169 – 17120172 – 17410Contoh soal simpangan kuartilSimpangan kuartil data diatas adalah…A. 4,125B. 10,25C. 162,5D. 65,25E. 170,5Pembahasan / penyelesaian soalCara menentukan simpangan kuartil tabel sebaran frekuensi sebagai berikutMenentukan kuartil pertama → Jumlah frekuensi N = 15 + 12 + 13 + 20 + 10 = 60 → 1/4 N = 1/4 x 60 = 15 Berdasarkan hasil ini kita peroleh kuartil pertama ada di kelas pertama → TB = 160 – 0,5 = 159,5 → fQ1 = 15 → ∑ fQ1 = 0 → c = 162,5 – 159,5 = 3 → Q1 = TB + 1/4 N – ∑ fQ1fQ1 c → Q1 = 159,5 + 15 – 015 3 = 159,5 + 3 = 162,5Menentukan kuartil ketiga → Jumlah frekuensi N = 15 + 12 + 13 + 20 + 10 = 60 → 3/4 N = 3/4 x 60 = 45 Berdasarkan hasil ini kita peroleh kuartil ketiga ada di kelas ke empat → TB = 169 – 0,5 = 168,5 → fQ3 = 20 → ∑ fQ3 = 13 + 12 + 15 = 30 → c = 168,5 – 171,5 = 3 → Q3 = TB + 1/4 N – ∑ fQ3fQ3 c → Q3 = 168,5 + 45 – 3020 3 = 168,5 + 2,25 = 170,75Jadi kita perolehSimpangan kuartil = 1/2 Q3 – Q1Simpangan kuartil = 1/2 170,75 – 162,5 = 4,125Jadi soal ini jawabannya A. Nomor 16 Simpangan kuartil dari data 16 15 15 19 20 22 16 17 25 29 32 29 32 adalah .... $\spadesuit \, $ Data diurutkan $\spadesuit \, $ Menentukan nilai kuartil $Q_1 = \frac{16+16}{2} = 16 $ $Q_3 = \frac{29+29}{2} = 29 $ $\spadesuit \, $ Menentukan simpangan kuartil $S_k = \frac{1}{2}Q_3-Q_1 = \frac{1}{2}29-16=\frac{1}{2}.13 = 6,5 $ Jadi, simpangan kuartilnya adalah 6,5 . $\heartsuit $ Nomor 17 Jumlah 6 suku pertama deret aritmetika adalah 24. Sedangkan jumlah 10 suku pertamanya adalah 100. Suku ke-21 adalah .... $\clubsuit \, $ Barisan dan deret aritmetika $U_n = a + n-1b \, \, $ dan $ \, S_n = \frac{n}{2}2a+n-1b $ $\clubsuit \, $ Menentukan nilai $a \, $ dan $ \, b $ $S_6 = 24 \rightarrow \frac{6}{2}2a+6-1b = 24 \rightarrow 2a+5b=8 \, \, $ ...persi $S_{10} = 100 \rightarrow \frac{10}{2}2a+10-1b = 100 \rightarrow 2a+9b=20 \, \, $ ...persii $\clubsuit \, $ Eliminasi persi dan persii $\begin{array}{cc} 2a+9b=20 & \\ 2a+5b=8 & - \\ \hline 4b = 12 \rightarrow b=3 & \end{array} $ persi $ 2a+5b=8 \rightarrow 2a + 5. 3 = 8 \rightarrow a = -\frac{7}{2} $ sehingga $U_{21} = a+ 20b = -\frac{7}{2} + 20 . 3 = -\frac{7}{2} + 60 = 56\frac{1}{2} $ Jadi, nilai suku ke-21 adalah $ 56\frac{1}{2} . \heartsuit $ Nomor 18 Jumlah 10 suku pertama deret $ {}^a \log \frac{1}{x} + {}^a \log \frac{1}{x^2} + {}^a \log \frac{1}{x^3} + .... \, \, $ adalah .... $\spadesuit \, $ Deret aritmetika $ \, S_n = \frac{n}{2}2a+n-1b $ $\spadesuit \, $ Menentukan nilai $U_1 \, $ dan beda $ {}^a \log \frac{1}{x} + {}^a \log \frac{1}{x^2} + {}^a \log \frac{1}{x^3} + .... \, \, $ $U_1 = {}^a \log \frac{1}{x} $ $b = U_2-U_1 = {}^a \log \frac{1}{x^2} - {}^a \log \frac{1}{x} = {}^a \log \left \frac{1}{x} \frac{1}{x^2} \right = {}^a \log \frac{1}{x} $ $\spadesuit \, $ Menentukan jumlah 10 suku pertama $\begin{align} S_{10} & = \frac{10}{2}2. {}^a \log \frac{1}{x} +9. {}^a \log \frac{1}{x} \\ & = 5. \left 11. {}^a \log \frac{1}{x} \right \\ & = 55. {}^a \log \frac{1}{x} \\ & = 55{}^a \log x^{-1} \\ & = 55. -1. {}^a \log x \\ S_{10} & = -55 {}^a \log x \end{align}$ Jadi, jumlah 10 suku pertamanya adalah $ -55 {}^a \log x . \heartsuit $ Nomor 19 Kelas A terdiri atas 35 orang murid, sedangkan kelas B terdiri 40 orang murid. Nilai statistika rataa - rata kelas B adalah 5 lebih baik dari nilai rata - rata kelas A. Apabila nilai rata - rata kelas A dan B adalah 57$\frac{2}{3} \, $ , maka nilai rata - rata kelas A adalah ..... $\clubsuit \,$ Misalkan, rata - rata A adalah $a \, $ dan rata - rata B adalah $\, b$ Rata - rata B 5 lebih baik dari A $\overline{x}_B = 5 + \overline{x}_A \rightarrow b = 5 + a \, \, $ ...persi Rata - rata gabungan A dan B $\begin{align} \overline{x}_{gb} & = \frac{n_A.\overline{x}_A + n_B.\overline{x}_B}{n_A + n_B} \\ 57\frac{2}{3} & = \frac{35a + 40b}{35+40} \\ 35a+40b & = 75 \times \frac{173}{3} \\ 7a + 8b & = 865 \, \, \, \text{...persii} \end{align}$ $\clubsuit \,$ Substitusi persi ke persii $7a + 8b = 865 \rightarrow7a + 8.5 + a = 865 \rightarrow a = 55 $ Jadi, rata - rata kelas A adalah 55. $ \heartsuit $ Nomor 20 Untuk $x \, $ dan $y \, $ yang memenuhi sistem persamaan $\left\{ \begin{array}{c} 3^{x-2y+1} = 9^{x-2y} \\ 4^{x-y+2} = 32^{x-2y+1} \end{array} \right. $ Maka nilai $ .... $ $\spadesuit \, $ Menyederhanakan persamaan $\begin{align} \text{pers1 } \, \, 3^{x-2y+1} & = 9^{x-2y} \\ 3^{x-2y+1} & = 3^2^{x-2y} \\ 3^{x-2y+1} & = 3^{2x-4y} \\ x-2y+1 & = 2x-4y \\ -x+ 2y & = -1 \, \, \text{...persi} \end{align}$ $\begin{align} \text{pers2 } \, \, 4^{x-y+2} & = 32^{x-2y+1} \\ 2^2^{x-y+2} & = 2^5^{x-2y+1} \\ 2^{2x-2y+4} & = 2^{5x-10y+5} \\ 2x-2y+4 & = 5x-10y+5 \\ 3x-8y & = -1 \, \, \text{...persii} \end{align}$ $\spadesuit \, $ Eliminasi persi dan persii $\begin{array}{cccc} -x+ 2y = -1 & \times 3 & -3x+6y = -3 & \\ 3x- 8y = -1 & \times 1 & 3x- 8y = -1 & + \\ \hline & & -2y = -4 \rightarrow y = 2 & \end{array} $ persi $ -x+ 2y = -1 \rightarrow -x+ = -1 \rightarrow x = 5 $ sehingga nilai $ = = 10 $ Jadi, nilai $ = 10 . \heartsuit $

simpangan kuartil dari data 16 15 15